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Abstract: Pathology segmentation in retinal images of patients with dia-
betic retinopathy is important to help better understand disease processes.
We propose an automated level-set method with Fourier descriptor-based
shape priors. A cost function measures the difference between the current
and expected output. We applied our method to enface images generated for
seven retinal layers and determined correspondence of pathologies between
retinal layers. We compared our method to a distance-regularized level
set method and show the advantages of using well-defined shape priors.
Results obtained allow us to observe pathologies across multiple layers and
to obtain metrics that measure the co-localization of pathologies in different
layers.
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1. Introduction

Diabetic retinopathy (DR) is an eye disease which is caused by retinal vascular abnormali-
ties and may cause blindness. Clinical methods, such as fundus photography and fluorescein
angiography, are available for visualizing vascular and tissue pathologies due to DR. Spec-
tral domain optical coherence tomography (SD-OCT) can image cross-sections of the retina,
thus facilitating the visualization and automated identification of pathological changes that oc-
cur across the retinal depth [1–4]. Enface retinal images derived from SD-OCT imaging is an
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emerging technique that can produce coronal (frontal) images of the retina at different depth-
s [3]. Enface SD-OCT imaging complements standard retinal OCT by providing an easy-to-
understand global overview of the retinal surface.

The photoreceptor inner segment ellipsoid (ISe) junction is a highly reflective band just above
the retinal pigment epithelium (RPE) [5, 6]. The ISe junction layer plays a fundamental role in
vision and disruption of this layer has been correlated with poor visual acuity in DR [7]. Enface
ISe images are reconstructed from a single interface within the retinal tissue from the SD-OCT
images, and therefore have high contrast and offer precise representation of the spatial extent
of disruptions due to retinal pathologies [6]. Many image processing techniques focus on the
separation of abnormal areas from normal areas in retinal images to detect and monitor changes
due to disease. The manual analysis of large volumes of data is neither feasible nor highly ac-
curate as it is affected by many external factors, stemming from variations in inter-observer
capabilities. Therefore, there is a need for the automated analysis of pathologies in retinal im-
ages [8–11]. Level-set techniques may provide an effective method for automated identification
of abnormalities in OCT images. In fact, the use of level-set methods for segmentation of ge-
ographic atrophy in enface OCT images has been previously demonstrated [11, 12]. Metrics
obtained from the observed data can provide insight into the progression of disease, thereby
allowing clinicians to follow an appropriate treatment plan.

In this paper, we demonstrate the feasibility of a level-set method to segment DR pathologies
in enface OCT images of both inner and outer retinal layers. The model uses shape priors,
derived from Fourier descriptors, to describe the typical form of pathologies present in the
image. The segmentation allowed visualization and measurement of areas of pathology across
multiple retinal enface layers. Application of this method has the potential to determine whether
disruptions in the ISe layer are related to pathologies in the inner retinal layers.

2. Level-set segmentation using shape priors

The popularity of level-set methods as a general framework for image segmentation has been
growing [11–13]. The level set method is an effective method that can be used for image seg-
mentation technique as it follows the evolution of interfaces, such as when regions break or
merge together. The basic idea of the level-set segmentation method is to begin with an initial
curve C and to evolve the curve so that it rests on the object’s boundaries. The evolutions of
the curve are brought about using constraints from the image [14]. Edge-based level-set mod-
els have been used to extract geographic atrophy in SD-OCT images [11, 12]. A type of the
region-based models, known as variational level-set models, provides optimal segmentation by
minimizing an energy functional. This energy functional usually depends on the image data
as well as the characteristic features used to identify the objects to be segmented. One of the
primary and classical variational level-set models was developed by Chan and Vese [15]. Their
method seeks the desired segmentation as the best piecewise constant approximation to a given
image [16]. Chan and Vese proposed to minimize the following energy functional:

E(c1,c2,φ) = µL(φ)+Eout(c1,c2,φ)

= µ

∫
δ (φ) | ∇φ | dxdy+

∫
(I− c1)

2H(φ)dxdy

+
∫
(I− c2)

2(1−H(φ))dxdy (1)

Here, µ ≥ 0 is a fixed parameter, φ is the level-set function, L(φ) is the length of the curve, c1
and c2 are the respective mean intensities inside and outside the contour, H(φ) and δ (φ) are the
1D Heaviside and Dirac delta function, respectively and I is the original image to be segmented.
L(φ) denotes the internal energy which controls the smoothness of the curve and Eout(c1,c2,φ)

#231735 - $15.00 USD Received 7 Jan 2015; revised 2 Apr 2015; accepted 11 Apr 2015; published 28 Apr 2015 
(C) 2015 OSA 1 May 2015 | Vol. 6, No. 5 | DOI:10.1364/BOE.6.001904 | BIOMEDICAL OPTICS EXPRESS 1906 



is the external energy which is driven by image features and forces the contour towards objec-
t boundaries. The Chan-Vese model assumes intensity homogeneity and seeks to partition an
image into regions of constant mean intensity. This often leads to poor segmentation results in
complicated images. Additionally, the Chan-Vese model is dependent on the placement of the
initial contour, yielding different results for different initial locations of the contour [16]. The
segmentation of medical images generally faces challenges including noise introduced during
the acquisition process, missing or broken boundaries, and complex biological structures. In
such cases, the introduction of prior information, such as an approximation of the shape, inten-
sity, and other features of the tissue of interest could help the segmentation algorithm perform
better. Recently, level set based approaches that integrate shape priors have been proposed using
different shape models. These approaches either use specific shapes known a priori, or the shape
parameters are obtained from available training data [17–22]. Fourier descriptors are a highly
effective and compact means of representing object shape and thus make an ideal candidate for
use as a shape prior in the level-set formulation [23–26]. In this work, we focus our study on
the description of shape priors using Fourier descriptors to simulate pathologies occurring in
the human retina. The shape signatures are derived using the centroid distance function. We in-
clude a cost-function which serves as a weighting function to determine the similarity between
the target curve and the derived curve. We obtain the automated segmentation of pathologies
visible in seven enface retinal images generated at different retinal depths. After segmentation,
we measure the co-localization of pathologies in the inner retina and ISe layers to determine
the effect of DR pathologies of the inner retina on the integrity of the photoreceptor cells.

3. Enface OCT Images

Enface OCT images were generated by performing high density SDOCT imaging over a
15◦ × 15◦ retinal area using a commercial instrument (Spectralis, Heidelberg Engineering),
as previously described in [6]. The volume scan consisted of 145 raster horizontal B-scans,
each with 768 A-scans and a depth resolution of 3.9µm. The instruments eye tracker allowed 9
B-scans to be averaged at each location. The spacing between B-scans was 30µm. The method-
ology for generating enface OCT images from B-scans is shown in Fig. 1. After correcting for
the curvature of the retinal pigment epithelium (RPE), an enface image of a retinal layer was
generated by extracting horizontal slices at a prescribed depth location within the retinal tissue
from each of 145 B-Scans. The depth locations of retinal cell layers were established in healthy
control subjects by manually measuring the distance from the RPE to the corresponding retinal
layer. Intensity data within individual slices of all B-scans were averaged to create rows of the
corresponding enface image. This process was repeated at different retinal depth locations for
generating enface images of 7 retinal layers. The time required for generation of the enface
images was approximately 1 minute. The depth locations of these slices were chosen to corre-
spond approximately with the normal anatomical locations of nerve fiber layer (NFL), ganglion
cell and inner plexiform layers (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (O-
PL), outer nuclear layer (ONL), inner segment ellipsoid (ISe) layer, and RPE. The horizontal
slice thickness for averaging was 30 microns for ISe and RPE layers and 20 microns for all
other retinal layers. Although enface images generated by this method will contain features of
adjacent retinal cell layers due to normal topographic alterations in retinal layers, an alternative
segmentation method of retinal layer boundary identification would be challenging in diabetic
retinopathy subjects due to pathologically irregular retinal structure and layer organization.

Example of enface images of 7 retinal layers in a healthy human eye is shown in Fig. 2.
Normal vascular patterns and relatively uniform reflectively were observed in most retinal lay-
ers. Shadows of the retinal vasculature are observed on the ISe and RPE layers. Retinal NFL
and GCL+IPL enface images displayed a central circular dark region that corresponded to the

#231735 - $15.00 USD Received 7 Jan 2015; revised 2 Apr 2015; accepted 11 Apr 2015; published 28 Apr 2015 
(C) 2015 OSA 1 May 2015 | Vol. 6, No. 5 | DOI:10.1364/BOE.6.001904 | BIOMEDICAL OPTICS EXPRESS 1907 



Fig. 1. Methodology for segmentation of B-scans to generate enface images of retinal lay-
ers. Depth locations of horizontal slices are indicated by red lines on an example B-scan
and the corresponding retinal layers are indicated.

normal foveal depression.

Fig. 2. Enface OCT images obtained in a healthy subject. The layers are as follows: Top
row left to right: NFL, GCL+IPL, INL, OPL. Bottom row, left to right: ONL, ISe, and RPE.

4. Method

Since enface images are generated by storing data in consecutive rows, unwanted artifacts often
appear in the form of horizontal lines across the image due to differences in B-Scan intensity.
The first step in our program is the removal of these artifacts prior to segmentation in order to
avoid any interference that they may cause. The next step is to define shape priors to quanti-
tatively describe the shape of typical pathologies observed in the enface images. These shape
priors are embedded into the level-set formulation to help segment objects of similar shape.
Lastly, morphological post-processing is applied to remove small objects and spurious pixels.
Once the regions of interest have been segmented, metrics are acquired to describe the size of
the pathologies and the position of pathologies’ centroids. The centroid is used to determine the
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co-localization of the pathologies in the GCL+IPL and ISe layers. If the centroids in the two
layers are within a small distance of each other or overlapping, then the presence of reduced
reflectivity in the ISe layer is due to abnormalities present in the overlying GCL+IPL layer. We
compared our results with results generated from the well-known distance-regularized level-
set evolution method by Chunming et al [27] to show the difference in results when using a
manually defined contour as opposed to embedding shape priors into the contour.

4.1. Preprocessing

In order to preserve features of interest whilst removing artifacts generated as a result of B-
scan intensity differences, we process the image in the frequency domain. Figure 3 (left) shows
enface image of the ISe layer in a healthy human eye with horizontal lines running across the
image. The vertical lines visible in the Fourier transformed image in Fig. 3 (center) correspond
to the horizontal lines in the spatial domain image. By removing these lines in the Fourier
domain we can obtain an image with less vertical intensity variations whilst retaining necessary
spatial information, as can be seen in Fig. 3 (right).

Fig. 3. Enface ISe image obtained in a healthy subject. Left: Before preprocessing; Cen-
ter: Fourier transform of original image; Right: After preprocessing with horizontal lines
removed.

4.2. Fourier descriptors for shape modeling

Two-dimensional (2D) object features such as edges, lines, and shapes are used as low-level
features in many image processing and computer visions applications. The use of shape priors
facilitates the segmentation process if one knows an estimated outline of the object of inter-
est. Shape features can be well-represented by Fourier descriptors, which can be easily derived
and compactly characterized. Fourier descriptors describe the shape of an object in terms of its
boundaries. In our model, we define the Fourier descriptor coefficients as those that represent
contours for the expected shape of the pathology. An advantage of doing so is that the coeffi-
cients are invariant to rotation, scale, and translation. This is important as pathologies can occur
at various rotations and be of varying sizes. There are many methods, such as statistical analy-
sis given a large number of samples, to define a target shape that compactly represents objects
belonging to the same class. The target shape signature was obtained by manual segmentation
of pathology regions in 35 enface images from 5 DR subjects (7 enface images per subject). A
total of 91 pathology regions were extracted from these enface images to comprise the training
set. Data obtained in a different group of DR subjects were used for testing the segmentation
method to avoid potential bias. All DR subjects had either non-proliferative or proliferative
diabetic retinopathy with clinically significant macular edema. The target shape signature was
obtained by averaging over the discrete Fourier transforms of the identified pathologies. The
spatial-domain averaged pathology target image is then obtained by applying the inverse Fouri-
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er transform. The one-dimensional (1D) Fourier descriptors of this 2D target image are obtained
by using the centroid-distance function. The absolute values of the Fourier descriptors repre-
sent the characteristic features of the pathology and are utilized as the shape prior to guide curve
evolution in our level-set equation.

4.3. Implementation of level-set segmentation using shape priors

In this section we will discuss the implementation details of obtaining the Fourier descriptors
for a polygonal curve. Suppose the discrete boundary of an object S, whose boundary is defined
by a closed curve C is plotted on the XY plane. If we traverse the boundary of the object by
starting at an arbitrary point (x0,y0), the coordinate pairs that will be encountered as we are
tracing the boundary path are (x1,y1),(x2,y2), ...,(xN−1,yN−1). We can express these coordi-
nate pairs as x(k) = xk and y(k) = yk. The shape signature of the boundary itself can therefore
be represented as the sequence of coordinates s(k) = [x(k),y(k)], for k = 0,1,2, ...,N− 1. An
obvious advantage of such a representation is that it reduces a two-dimensional (2D) problem
to a one-dimensional problem (1D). ). Before applying the discrete Fourier transform (DFT) on
the shape signature, the target shape must be sampled to a fixed number of points. By varying
the number of sample points, the accuracy of the shape representation can be adjusted. The
larger the number of sample points, the more accurately the shape is represented. We sample
the shape to a fixed number of points using the equal points sampling method, in which 64
(a power of two integer facilitates the use of the discrete Fourier transform (DFT)), candidate
points which are equally spaced along the shape boundary are selected. There are two advan-
tages to using a lower number of sample points. Firstly, this number of points gives a smoothed
representation of the shape signature of interest and reduces the computation power required.
Secondly, Fourier descriptors give equal weight to all harmonics. This emphasizes the differ-
ences in the higher order harmonics, which are more sensitive to irregularities [28]. By using a
lower number of harmonics we can avoid this drawback.

The discrete Fourier transform (DFT) of s(k) is

a(u) =
1
N

N−1

∑
k=0

s(k)e(
− j2πuk

N ) (2)

for u = 0,1,2, ...,N−1. The complex coefficients of a(u) are called the Fourier descriptors of
the boundary, a frequency based description of the boundary of the images. The inverse Fourier
transform of a(u) restores s(k), i.e.,

s(k) =
N−1

∑
u=0

a(u)e(
j2πuk

N ) (3)

for k = 0,1,2, ...,N−1. We use the centroid distance function to calculate the shape signature,
as it has been shown that shape representation using the centroid distance function is significant-
ly better than using other techniques, such as complex coordinates and curvature signature [29].
The centroid distance function is given by the distance of the boundary points from the centroid
(xc,yc) of the shape:

r(k) = ([x(k)− xc]
2 +[y(k)− yc]

2)
1
2 ,

k = 0,1, ...,N−1

xc =
1
N

N−1

∑
k=0

x(k)

yc =
1
N

N−1

∑
k=0

y(k) (4)
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In order to extract the FD of the desired shape prior, the 1D Fourier transform must be applied
to the centroid distance function, r(k) as follows:

an =
1
N

N−1

∑
k=0

r(k)e
− j2πnk

N n = 0,1, ...,N−1 (5)

All the Fourier transformed coefficients are standardized by the first Fourier transformed coef-
ficient a0. An advantage of using FD’s for boundary representation is that the FD’s are rotation,
scale, and translation invariant. The phase information is ignored and the coefficient magnitudes
are retained. In order to denote the Fourier transformed coefficients that have been normalized
and whose phase information is ignored we do bn = | an

a0
| where bn is invariant to rotation, trans-

lation, scaling, and change of starting point [30]. Translation has no effect on the descriptors
except at the position where k = 0, which has the impulse function δ (k). The inverse DFT
of this descriptor is equivalent to the centroid of the object. Translation invariance is easily
achieved by setting k(0) = 0, and translating the origin of the coordinate system to the center
of mass of the pattern [31]. Rotation invariance can be achieved by ignoring the phase infor-
mation of a(u0) and using only the absolute value or magnitude of | a(u0) | at each descriptor.
Scale invariance is achieved by dividing | a(u0) | by the DC component. In order to measure the
similarity between a target shape T and a query Q, the Euclidean distance between the Fourier
descriptor representations of the two shapes is measured [32] . Therefore, we define our level
set model as:

Eimg = Eshape +Eregion +Ecost

or more specifically:

Eimg(φ ,c1,c2) =−δε(φ) ·µ · (
∇φ

| ∇φ |
)

+
∫

H(φ)dxdy+λ1

∫
(I− c1)

2H(φ))dxdy

+λ2

∫
(I− c2)

2(1−H(φ))dxdy+‖S̃1− S̃2‖ (6)

An explanation of the parameters is given as follows: δε(φ) is the Dirac delta function,
which is the directional derivative of the Heaviside function. This can be implemented using a
discretized and regularized version of the function, given by:

1
π

ε

ε2 +φ 2 (7)

where ε is an infinitesimal term to avoid division by 0. φ is a signed distance function obtained
using a distance transform, such that the values inside φ are negative and the values outside φ

are positive. ∇φ

|∇φ | is the curvature, given by the ratio of the gradient and magnitude of the signed
distance function. This can be implemented using a finite difference scheme as follows:

φxxφ 2
y −2φxyφxφy +φyyφ 2

x

(φx +φy)3/2 (8)

where φx,φy,φxy are the derivatives of φ in the x,y,xy directions, respectively. H(φ) is is the
unit-step Heaviside function such that H(φ) = 1 if φ ≥ 1 and H(φ) = 0 if φ < 0. For a smooth
approximation of the unit step function, we implement the Heaviside by the following equation
[15]:

H(φ) =
1
2
(1+

2
π

arctan(
φ

ε
)) (9)
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The integral is implemented as a sum over all the image pixels such that the value of this
functional is the integral of the image I over all the pixels where φ is positive. λ1,λ2, and µ in
the level-set equation are the only parameters to be tuned. In order to maintain consistency in
the application of the algorithm, we set the values of these parameters to 1. c1 and c2 are the
respective average intensities inside and outside the contour φ . They are computed as follows:

c1(φ) =

∫
I(x,y)H(φ(x,y))dxdy∫

H(φ(x,y)dxdy

c2(φ) =

∫
I(x,y)(1−H(φ(x,y)))dxdy∫

1−H(φ(x,y)dxdy
(10)

S1 and S2 are the respective low order coefficients of the target shape and object pathology and
the value of this functional minimizes the distance between the target and object pathology. The
principal steps of the algorithm are given as follows:

1. Initialize the signed distance function, φ .

2. Compute the values of c1 and c2 using Equation 10.

3. Calculate the cost function between Fourier descriptors of target and test objects.

4. Solve for the Equation 6 using discretized Equations of 7,9, and 10.

5. Iterate until convergence.

The algorithm will converge as the functional reaches a minimum when the contour reaches the
boundaries of the object. After segmentation, the images are post-processed to remove small
objects and spurious pixels.

4.4. Validation of level-set segmentation

To validate the method, manual segmentation of pathologies was performed by a masked ob-
server (AF) and compared to the automated level-set segmentation results. Manual segmenta-
tion was performed by outlining and demarcating regions of pathology on enface retinal images
in three DR subjects using ImageJ software. To compare level-set and manual segmentations,
metrics of sensitivity, specificity, precision, and accuracy were calculated after categorizing ev-
ery pixel of the automated segmentation regions as true-positive, true-negative, false-positive
or false-negative based on their correspondence with manually segmented regions. These cal-
culations were done on the binary images of the manually and automated segmented images.

5. Results

We present the results of the application of our segmentation method in three DR subjects and
demonstrate co-localization of pathologies in the GCL+IPL and ISe layers in two of the three
subjects. Figures 4 and 5 show the segmentation results of our level-set method applied to
enface retinal images generated in two DR subjects. The removal of the horizontal lines in the
frequency domain aids in the segmentation process and allows for a much cleaner representation
of irregularities in the image. As shown in the figures, both light and dark irregularly shaped
pathologies were detected and outlined, regardless of size, shape, and orientation. The results
shown for DR subject 1 (Fig. 4) show segmentation of predominantly bright regions in the
GCL+IPL layer which represent hard exudates and dark regions in the ISe layer. Compiled data
from 21 enface layers in three DR subjects yielded an average sensitivity and specificity of 0.48
and 0.93 for level-set segmentation, respectively. The average precision (positive predictive
value) and accuracy of the level set segmentation method were 0.52 and 0.91, respectively.
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For DR subject 2, (Fig. 5) the results show both bright and dark segmented regions in the
GCL+IPL layer and smaller dark regions in the ISe layer. Sample B-scans, indicating the retinal
depth at which enface images were generated, are shown to verify the correspondence between
pathologies detectable on enface retinal images and B-scan images. From enface images in DR
subject 1, the centroids and areas of the three largest objects in the GCL+IPL and ISe layers
were calculated in order to determine the extent of co-localization of pathologies present in
these two layers. In the enface image of the GCL+IPL layer, these bright objects appeared as
dark objects in the ISe layer. Figure 6 shows the respective centroids marked for the GCL+IPL
(blue dots) and the ISe (yellow dots) enface images for DR subjects 1 and 3. Shown in Table
1 are the estimated areas and centroids of the detected pathologies in the GCL+IPL and ISe
enface images. The three segmented pathologies in the tope row of Fig. 6 (DR subject 1) are
referred to as the left, center, and right in Table 1. The high correspondence in the locations of
the centroids of the pathologies between the GCL+IPL and ISe images are depicted in Table
1 for both DR subjects 1 and 3. The high co-localization of centroids in DR subject 1 indicate
shadowing of the pathology in the GCL+IPL layer as the probable source of reduced reflectance
of light in the ISe layer.

We compared our results with results generated from the distance-regularized level-set evo-
lution method by Chunming et al [27] in order to emphasize the complications which may arise
when using a manually defined contour as opposed to embedding shape priors into the contour.
Figure 7 shows the algorithm results on segmentation of pathologies in the GCL+IPL and ISe
layers using our method (top row) and the distance-regularized method proposed by [27] (bot-
tom row). In the method proposed by [27], the contour encloses two objects as one rather than
splitting to detect three larger pathologies and several smaller ones. Similarly, the results shown
in the ISe layer depict a single pathology being segmented rather than the multiple pathologies
which are clearly visible. As we have chosen the number of samples in the Fourier descriptor
to be an integer power of two, the DFT can be more efficiently calculated, with a time com-
plexity of O(Mlog2M), where M is the number of sample points [33]. The time complexity of
solving the level-set equation for a single image is O(M2), where M is the number of pixels in
the image.
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Fig. 4. Enface images of DR subject 1 with and without pathologies segmented. Top row,
left to right: NFL, GCL+IPL, INL, and OPL. Bottom row, left to right: ONL, ISe, and RPE.
Arrows point to the location of a sample B-scan which is shown below the enface images to
indicate the retinal depth (red line) of the enface images and correspondence of visualized
pathologies.
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Fig. 5. Enface images of DR subject 2 with and without pathologies segmented. Top row,
left to right: NFL, GCL+IPL, INL, and OPL. Bottom row, left to right: ONL, ISe, and RPE.
Arrows point to the location of a sample B-scan which is shown below the enface images to
indicate the retinal depth (red line) of the enface images and correspondence of visualized
pathologies.
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Fig. 6. Top row: Centroids of pathologies marked on the GCL+IPL and ISe layers of DR
subject 1. Bottom row: Centroids of pathologies marked on enface GCL+IPL and ISe im-
ages of DR subject 3
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Table 1: Pathology areas and centroids estimated for GCL+IPL and ISe layers in DR subjects 1
and 3. The three segmented pathologies shown in Fig. 6 are referred to here as the left, center,
and right pathologies.

Image Area Centroid
DR subject 1 GCL+IPL (left) 819 [403, 367]
DR subject 1 GCL+IPL (center) 1069 [444, 419]
DR subject 1 GCL+IPL (right) 717 [506, 338]
DR subject 1 ISe (left) 1061 [396, 353]
DR subject 1 ISe (center) 329 [440, 422]
DR subject 1 ISe (right) 343 [504, 342]
DR subject 3 GCL+IPL 11229 [312, 421]
DR subject 3 ISe 7372 [354, 402]

Fig. 7. Segmentation results on GCL+IPL and ISe images. Top row: our method. Bottom
row: distance-regularized level-set evolution method [27].
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6. Conclusion and discussion

Monitoring of pathological changes in retinal layers is important for management of patients
with DR. Segmentation and quantification of regions of pathologies in enface OCT images
offers a promising method. We have proposed a level-set based method which incorporates
shape priors and metrics derived from those priors to propagate the curve towards boundaries
of objects of interest. The parameters of the level-set equation are replaced with parameters
which can more appropriately handle variations in intensity within objects. In the current study,
the shape priors were defined using Fourier descriptors obtained from 91 pathology samples
taken from 35 enface retinal images. In future studies, a larger training set may be required to
improve performance and better evaluation of the level-set segmentation method.

We have provided results showing how our method segments pathologies across enface im-
ages of retinal layers. Additionally, the centroids and areas of pathologies in the GCL+IPL and
ISe images were measured to determine whether the pathologies visible in the GCL+IPL layer
affected the visibility of the ISe layer. Confirmation of the detected pathologies by thorough
evaluation of small structures on the large number of B-scans was not practical. However, the
high sampling density of B-scans and correspondence between automated and manual segmen-
tation provided support for method validation. The sensitivity of the method may have been
adversely affected by several factors, including image smoothing from the Fourier transform
step that eliminated horizontal lines, boundary smoothing that prevented jagged edges, and a
post-processing step that removed small segmented areas. The sensitivity may be improved by
incorporating geometric measures of the pathologies (such as average size, circularity, eccen-
tricity, jaggedness) as cost terms in the level-set equation. One limitation of the study was the
small sample size. Thus it is unclear whether this approach can be successfully applied in data
sets with more variable image quality. Further studies in a larger data will be needed to establish
the validity of the method, which will determine its’ utility for clinical trials.

Overall, use of Fourier descriptors as shape priors provides a compact and robust way of
describing objects in terms of their boundaries and can greatly improve the accuracy of the
segmentation. Application of the proposed technique can allow clinicians to observe the mor-
phological changes brought about by disease and can also provide insight into factors that affect
the integrity of the ISe layer.
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